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Many simulations of stochastic processes require colored noises: I describe here an exact numerical method
to simulate power-law noises: the method can be extended to more general colored noises, and is exact for all
time steps, even when they are unevenly spaced �as may often happen for astronomical data; see, e.g., N. R.
Lomb, Astrophys. Space Sci. 39, 447 �1976��. The algorithm has a well-behaved computational complexity, it
produces a nearly perfect Gaussian noise, and its computational efficiency depends on the required degree of
noise Gaussianity.
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In recent years colored noise sources have been
considered in many disparate applications, that range from
stochastic resonance �1�, to biophysics �2,3� and beam dy-
namics in particle accelerators �4,5�. The analytical approach
to some of these processes is often difficult, and sometimes
impossible, and numerical experiments are commonly used
to support the analytical conclusions, or as an aid to discover
new results. For this reason, algorithms that produce colored
noise have acquired an ever increasing importance. This
widespread interest spans different scientific communities,
and the existing algorithms reflect the variety of approaches
to the understanding of stochastic processes in different
contexts. There are physics-inspired algorithms that rely
mostly on equations of the Langevin type, fast-Fourier-
transform �FFT�-based and autocorrelation function methods
that use the spectral or correlation properties of colored
noise, and time-series methods that produce colored noise
from different filtering approaches. The review paper by
Kasdin �6� provides a long list of references until 1995,
centered mostly on linear processes and FFT methods. More
recently, Greenhall wrote a review paper on FFT-based meth-
ods �7�, and Ref. �8� is another very clear paper on the same
topic. I describe here an exact numerical simulation of
power-law noises that can be extended to more general col-
ored noises, and which is based on the classical argument
proposed long ago by Bernamont to model 1 / f� noise as a
superposition of Ornstein-Uhlenbeck processes �9�. The syn-
thesis of colored noise from a point process is clearly
not new, because this kind of modeling dates as far back as
1909, to the work of Campbell �10� �see also the famous
paper by Rice �13��; more recently Lowen and Teich and
collaborators have carried out extensive studies on point
processes with long-tail pulse response functions �14,15�,
and others have studied the synthesis of power-law spectra
from nonlinear processes �see, e.g., �16� for a model based
on a multiplicative point process�. The simulation methods
described in �6,7� assume evenly distributed sampling
steps, and the extension to uneven sampling is not trivial:
however, noneven sampling has many important applications
�see, e.g., the classic papers by Lomb and Scargle �17,18�

on period analysis for irregularly sampled astronomical data,
and two more recent references �19,20��, and Gillespie dis-
cussed a method valid for the Ornstein-Uhlenbeck �OU� pro-
cess and based on the Langevin equation in 1996 �21�. The
algorithm proposed here is very general �it is not limited to
the OU process�, it is very easy to implement, it is valid for
all time steps, it has a well-behaved computational complex-
ity, it produces a nearly perfect Gaussian noise, and its com-
putational efficiency depends on the required degree of noise
Gaussianity.

Here we take a signal x�t� that originates from the linear
superposition of many random pulses, i.e., pulses that
are random in time and can be described by a memoryless
process with a Poisson distribution, have random amplitude
A drawn from a distribution with finite variance and
probability density gA�A�, and such that their pulse response
function is

h�t,�� = �exp�− �t� if t � 0,

0 if t � 0,
� �1�

with a decay rate which is drawn from a distribution with
probability density g����, so that

x�t� = �
k

Akh�t − tk,�k� �2�

where tk is the time at which the kth pulse occurs, Ak is its
amplitude, and �k is the decay rate of its pulse response
function.

If n is the pulse rate, then on average there are
n�gA�A�dA��g����d��dt� pulses in the time interval �t� , t�
+dt�� and in the amplitude-� range dA d�; the number of
pulses follows a Poisson distribution and therefore the
variance of the number of detected pulses is also equal to
n�gA�A�dA��g����d��dt�. This means that the mean and
the variance of the output signal at time t are given by the
integrals

�x	 = 

�min

�max

g����d�

Amin

Amax

gA�A�dA

−�

t

dt�n�Ah�t − t�,���

�3�
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���x�2	 = 

�min

�max

g����d�

Amin

Amax

gA�A�dA

−�

t

dt�n

��Ah�t − t�,���2. �4�

If we assume that the amplitude A is fixed, take the pulse
response function �1�, and rearrange the time integration, the
integrals �3� and �4� simplify to

�x	 = nA

�min

�max

g����d�

0

�

dt�h�t,���

= nA

�min

�max g����
�

d� = nA� 1

�
� �5�

and

���x�2	 = nA2

�min

�max

g����d�

0

�

dt�h�t,���2

= nA2

�min

�max g����
2�

d�

=
nA2

2
� 1

�
� . �6�

Now let H�� ,�� be the Fourier transform of h�t ,��;
then from the causality constraint on h�t ,�� and Parseval’s
theorem we find that the variance �6� can be transformed
into

���x�2	 =
nA2

2	



�min

�max

g����d�

−�

�

d�H��,��2

=
nA2

2	



−�

�

d�

�min

�max

g����d�H��,��2. �7�

The right-hand expression in Eq. �7� shows that the spectral
density is

S��� =
nA2

2	



�min

�max

g����d�H��,��2 �8�

and since H�� ,��2= ��2+�2�−1 for the exponential pulse
response function �1�, we obtain eventually

S��� =
nA2

2	



�min

�max g����
�2 + �2d� . �9�

We consider now three special, important cases. If there is
just a single decay rate �, the spectral density has the usual
Lorentzian shape

S��� =
nA2

2	

1

�2 + �2 �10�

which, for �
�, has a 1/ f2 behavior, so that we can
approximate a 1/ f2 spectrum in an actual process by choos-
ing a � smaller than the lowest observed frequency. With
a careful choice of the distribution g���� we can synthesize
many different spectra, but there are two special choices for
g����: we can take a uniform distribution or a range-limited
power-law distribution. If we assume a uniform distribution
of decay rates, between �min and �max, i.e.,

g���� =
1

�max − �min
, �11�

then the average �1/�	 that determines the mean level �5�
and the variance �6� is

� 1

�
� =

ln��max/�min�
�max − �min

, �12�

and using Eq. �9�, the spectral density is easily shown
to be

S��� =
nA2

2	��max − �min�
1

�
�arctan

�max

�
− arctan

�min

�
� ,

�13�

and in the range �min����max this spectral density has a
1/ f behavior. Similarly, if we take a range-limited power-law
distribution

g���� = � 1 − �

�max
1−� − �min

1−���−� �14�

then the average �1/�	 is

� 1

�
� = − �1 − �

�
� �max

−� − �min
−�

�max
1−� − �min

1−� �15�

and the spectral density is

FIG. 1. A realization of the random process
x�t� �Eq. �2�� with A=1, n=1, and with fixed de-
cay rate �=0.5 �all quantities are given in arbi-
trary units; � is given in inverse time units�. The
single exponential decays are clearly visible, and
the random process is obviously non-Gaussian.
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FIG. 2. Structure and update dynamics of the linked list that holds the Poisson-distributed transition events. �a� Structure of the list at the
jth sampling time sj; each node contains a variable that points to the next node �the end of the list is marked by a null pointer�, and stores
the time tk of the transition and the decay rate �k of the associated pulse response function. The list contains only nodes such that
sj − tkNdecay /�k. The response of the system is computed from the sum �k exp�−�k�sj − tk��, where the index k ranges over all the list
elements such that sj − tk�0 �the list head is usually excluded�. �b� If the �j+1�th sampling time is greater than the time stored in the list head
�as is usually the case�, the program generates as many transition times as needed to reach �and possibly overcome� the �j+1�th sampling
time �light gray boxes in the figure, primed quantities�, and next it scans the list to discard all the nodes such that sj+1− tk�Ndecay /�k �dark
gray boxes�. At this point the program computes the new response and steps to the next sampling step.

FIG. 3. Length of the linked list in a simula-
tion with A=1 and a single decay rate �=0.001:
the linked list is initially empty, and it fills up at a
constant rate. In this case n=1, Ndecay=20, and
�s=1 and therefore the fill-up time is
�Ndecay /��=20 000 the fill-up length is
n�Ndecay /��=20 000, and the number of samples
required for the initial fill-up is �Ndecay /�� /�s
=20 000. After the initial fill-up the length of the
linked list fluctuates about the average filling
level.
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S��� =
1

��max
1−� − �min

1−���2��max
1−�F�1 − �

2
,1;

1 − �

2
;
− �max

2

�2 �
− �min

1−�F�1 − �

2
,1;

1 − �

2
;
− �min

2

�2 �� �16�

which has a 1/ f1+� behavior in the range �min����max.
Now we follow the lead provided by these considerations,

and we take, e.g., the case where there is just a single
decay rate �, so that the spectral density has the Lorentzian
shape �10�. Since the probability density of the time
intervals �tk between Poisson events is well known to
be dP��t�=n exp�−n�t�d�t, we can generate a sequence
of �t’s from an exponential distribution, and we can
thus generate the sequence �tk� �with tk+1= tk+�tk� required
to evaluate a realization of x�t� as in Eq. �2�: Fig. 1 shows an
example where the single decays are clearly visible. Figure 1
also shows that, although the process has the desired spectral
density, it is quite obviously non-Gaussian and therefore
this generation method seems to be of marginal utility, as
most of the actual physical processes are Gaussian and Gaus-
sianity is usually a required property of a good noise genera-
tor �see, e.g., the recent paper �11� that describes a hardware-
based Gaussian white noise simulator and contains a list of
relevant references; notice also that Gaussianity is sometimes
a weakness rather than a strength; see, e.g., �12��. The Gaus-
sianity in shot noise processes has been studied at length
since the paper by Rice �13� and here we strictly limit the
discussion to the special processes considered in this paper.
The single exponential spikes in Fig. 1 stand out more
clearly when the average rate n of the Poisson process is
smaller than the decay rate �; by contrast, when n
�, at any
time there are many pulses of comparable size and the sum
has a nearly Gaussian behavior. We can gain further insight

in this generation method by using the mean moment gener-
ating function �MMGF� for a Poisson process with average
rate a:

Šexp�it�k − �k	��‹ = �
m=0

�

Š�k − �k	�m
‹

�it�m

m!

�17�
=exp��eit − 1�a − ita�

=1 +
i2

2!
at2 +

i3

3!
at3 +

i4

4!
�3a2 + a�t4

+
i5

5!
�10a2 + a�t5 +

i6

6!
�15a3 + 5a2 + a�t6 + O�t7� . �18�

Now we use the MMGF to compute the higher-order mo-
ments: as already discussed in the derivation of Eqs. �3� and
�4�, the process x�t� is the sum of Poisson variates with dif-
ferent amplitudes; on the other hand the MMGF of the
weighted sum �k+�j of two independent Poisson variates k
and j, both with rate a, is

Šexp�it���k + �j� − ��k + �j	��‹

=Šexp�it��k − �k	��‹Šexp�it��j − �j	��‹
�19�

=1 +
i2

2!
a���t�2 + ��t�2�

+
i3

3!
���t�3 + ��t�3� + O�t4� . �20�

Using the MMGF’s given above we could proceed as in
standard texts on probability theory, and show that for large

FIG. 4. Plot of the normalized signal ampli-
tude �x�t�− �x	� /� �� is the standard deviation of
the amplitude, i.e., the square root of the variance
�6�� in the simulation run described in Fig. 3 and
in the text. At the beginning the linked list which
contains the process memory is empty, and the
signal is very far off the predicted average; as the
list fills up to level, the signal quickly reaches the
predicted average.

FIG. 5. Detail of the normalized signal ampli-
tude shown in Fig. 4, just after the list has filled
up to the average level. This signal displays the
large characteristic upward an downward swings
that are well known in the theory of random
walks �23�.
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a the process approaches an exact Gaussian distribution �the
usual proof of the central limit theorem�, but the purpose
here is giving a quantitative estimate of the deviation from
Gaussianity: from the expansion �20�, we see that, just like
the variance, the third moment about the mean of the
weighted sum of independent Poisson variates is the
weighted sum of the third moments of the individual variates
�this is not true for the fourth and the higher moments�, and
therefore we can write a simple expression for the third mo-
ment about the mean,

���x�3	 = nA3

�min

�max

g����d�

0

�

dt�h�t,���3, �21�

and we can use this expression to compute the skewness of
the frequency distribution,

�skewness� =
���x�3	

���x�2	3/2

=



�min

�max

g����d�

0

�

dt�h�t,���3

�n�

�min

�max

g����d�

0

�

dt�h�t,���2�3/2
.

�22�

FIG. 6. The histogram shows the amplitude
distribution of 262 144 samples from the realiza-
tion of the random process x�t� shown in Fig. 4,
after the list fill-up. The continuous curve is a
Gaussian with the mean and standard deviation
estimated from the samples. There is no visible
skewness, because in this simulation run
� /n=0.001, which corresponds to a very low
skewness �23�, but there are multiple peaks,
which are due to the nonstationarity of a true 1/ f2

process �which is well approximated here�, and
which require an extremely long observation time
to establish the Gaussianity of the process �23�.

FIG. 7. DFT spectrum obtained from 262 144
samples from the realization of the normalized
signal amplitude �x�t�− �x	� /� shown in Fig. 4.
The continuous curve shows the theoretical
power spectral density �10�. Because of sampling
without low-pass filtering there is some aliasing
and the DFT spectrum shows a slight upward
bend at high frequency. Since the sampling inter-
val is �s=1, the Nyquist �angular� frequency is
just �Nyquist=	 �here and in the following spectra
time is measured in arbitrary units as in the pre-
vious figures, and frequency units are defined ac-
cordingly�. The arrow marks the position of the
single decay rate in this simulation �=0.001.
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With the pulse response function �1� the integrals are easily
evaluated, so that

�skewness� =



�min

�max

�g����/�3���d�

�n�

�min

�max

�g����/�2���d��3/2
=

23/2

3

1

�n�1/�	
.

�23�

From Eqs. �22� and �23�, we see that the skewness is small

when n�1/�	 is large �as it should be for a Gaussian distri-
bution� and that the actual amount of skewness depends on
the adimensional product n�1/�	, as expected; as a rule of
thumb one might take n�1/�	�10 for good Gaussianity.

The previous considerations apply to the noise process
x�t� without any reference to sampling, however the simula-
tion of noisy physical systems usually implies evaluating the
noise process at evenly spaced sampling times, so we take
now a sequence of sampling times �sj� with average sam-
pling interval ��s	. At each sampling time only the recent
pulses actually contribute, while the older pulses quickly

FIG. 8. Averaged DFT spectrum obtained from the same 262 144 samples as the spectrum in Fig. 7, split into 32 blocks of 8192 samples
each. The continuous curve shows the theoretical power spectral density �10�, and now it includes also the first-order correction to aliasing.
Because of the low-frequency correlation between the blocks �that have been obtained from the same simulation record�, the average
spectrum is a bit higher than expected and the theoretical prediction has been globally shifted 20% higher to fit the average spectrum; this
artifact is absent in the analysis of the whole record �the low-frequency plateau of the spectrum in Fig. 7 fits the theoretical curve exactly as
expected�. As in Fig. 7, the arrow marks the position of the single decay rate in this simulation �=0.001: because of the shorter record length
used for DFT analysis, the frequency resolution is poorer here, and the spectrum mimics quite well the behavior of a true 1/ f2 spectrum, over
about three frequency decades.

FIG. 9. Length of the linked list in a simulation with A=1 and a uniform distribution of decay rates in the range �min=0.0001,
�max=1: the linked list is initially empty, at it fills up with a variable rate that depends on the distribution of decay rates. In this case
n=10, Ndecay=20, �s=1, and �1/�	�9.211, and therefore the fill-up time is Ndecay /�min=200 000 the fill-up length is n�Ndecay�1/�	�
�1842, and the number of samples required for the initial fill-up is �Ndecay /�min� /�s=200 000. After the initial fill-up the length of the
linked list fluctuates about the average filling level.
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FIG. 10. Detail of the normalized signal am-
plitude in the simulation of Fig. 9, just after the
list has filled up to the average level.

FIG. 11. The histogram shows the amplitude
distribution of 262 144 samples from the realiza-
tion of the random process x�t� shown in Fig. 10,
after the list fill-up. The continuous curve is a
Gaussian with the mean and standard deviation
estimated from the samples. In contrast to the his-
togram in Fig. 6, now the amplitude distribution
appears slightly skewed, because in this simula-
tion run 1/ �n�1/�	��0.0109, noticeably higher
than the corresponding value for Fig. 6.

FIG. 12. Averaged DFT spectrum obtained
from the 262 144 samples in the simulation of
Fig. 9, split into 32 blocks of 8192 samples each.
The continuous curve shows the theoretical
power spectral density �13�, which includes also
the first-order correction to aliasing. The arrows
mark the positions of the extreme decay rates
�min=0.0001 and �max=1. The spectral resolution
���0.0015 is larger than the minimum decay
rate �min, and the spectrum mimics quite well the
behavior of a true 1/ f spectrum �dashed line�,
over more than three frequency decades.

EXACT NUMERICAL SIMULATION OF POWER-LAW NOISES PHYSICAL REVIEW E 72, 056701 �2005�

056701-7



fade away, for instance the average total contribution of
pulses that are older than Ndecay /� in a process with a single
decay rate is

��x	 = nA

�min

�max

g����d�

−�

t−Ndecay/�

dt�h�t − t�,��

= nA

�min

�max

g����d�

Ndecay/�

�

h�t��dt� = nA� 1

�
�e−Ndecay,

�24�

which is just a small fraction of the mean value
��x	 / �x	=e−Ndecay, and for this reason as we proceed forward
in time, we can just forget the older transitions. In an actual
implementation we fix Ndecay, but because of random event
clustering we cannot know a priori how many transition
times must actually be kept in memory: for this reason the
Poisson-distributed transition times should not be stored in
an array, but in a linked list �22�; the linked list must also
store the decay rates that correspond to each transition event.
At each sampling step the list is updated first by generating
as many transition times �and the associated decay rates,
which are drawn from a given decay rate distribution� as
needed to reach �and possibly surpass� the actual sampling
time sj, and then by discarding those events with an occur-
rence time tk such that sj − tk�Ndecay /� �see Fig. 2�. The
mean list length is just nNdecay�1/�	, and the processing time
is proportional to the number of list elements. At startup the
list is empty, and the first Ndecay / ��min��s	� samples must be
used for initialization and afterwards discarded as the algo-
rithm fills the list up to the average level, and thus, for a
desired number of samples Ns, we must generate a total of
Ns+Ndecay / ��min��s	� samples. The time complexity of the
algorithm is thus proportional to the sum of the total number
of generated transitions plus the total number of operations
used for the list scans, i.e.,

�complexity� = �Ns +
Ndecay

��s	
1

�min
��C1n��s	

+ C2nNdecay� 1

�
��

= n��s	�Ns +
Ndecay

��s	
1

�min
�

��C1 + C2
Ndecay

��s	 � 1

�
�� . �25�

The algorithm described above is easily implemented;
Figs. 3–8 show the results obtained in a simulation of
Ns=218=262 144 transitions, with a single decay rate
�=0.001, and a Poisson transition rate n=1 �here and in all
the following discussions the system of units is arbitrary�;
moreover Ndecay=20, so that the average relative error
due to the past transitions that have been discarded is
��x	 / �x	=exp�−Ndecay��2�10−9. With these parameters we
expect an average list length nNdecay /�=20 000, and a corre-
sponding filling time Ndecay / ���s�=20 000: Fig. 3 shows the
list length, which behaves exactly as expected. Figures 4 and
5 show the normalized signal amplitude �x�t�− �x	� /�, where
� is the standard deviation of the amplitude, i.e., the square
root of the variance �6�: at the beginning the linked list which
contains the process memory is empty, and the signal is very
far off the predicted average, but as the list fills up to level,
the signal quickly reaches the predicted average. Figure 6 is
the histogram of the normalized signal amplitude obtained
from 262 144 samples, after the list fill-up; the continuous
curve superimposed on the histogram is a Gaussian with the
mean and standard deviation estimated from the samples,
and we see that there is no visible skewness, because in this
simulation run � /n=0.001, which corresponds to a very low
skewness �23�, but there are multiple peaks, which are due to
the nonstationarity of a true 1/ f2 process �which is well ap-
proximated here�, and which require an extremely long ob-
servation time to establish the Gaussianity of the process
�23�. Finally Figs. 7 and 8 show the discrete Fourier trans-

FIG. 13. Averaged DFT spectrum obtained
from 220=1048576 samples with A=1 and a
range-limited power-law distribution of decay
rates �−�, with �=0.2, in the range �min=0.0001,
�max=1, split into 32 blocks of 32 768 samples
each. The continuous curve shows the theoretical
power spectral density �16�, which includes also
the first-order correction to aliasing. The arrows
mark the positions of the extreme decay rates
�min=0.0001 and �max=1. The spectral resolution
���0.000 38 is larger than the minimum decay
rate �min, and the spectrum mimics quite well the
behavior of a true 1/ f1.2 spectrum �dashed line�,
over more than three frequency decades.
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form �DFT� spectrum of the normalized signal amplitude,
which reproduces quite well the expected shape �10�.

The next set of figures shows the results of a simulation
with decay rates that are uniformly distributed between
�min=0.0001 and �max=1. Just as before, the simulation con-
tains Ns=218=262 144 samples, with a transition rate n=10,
a sampling interval �s=1, and Ndecay=20: from these param-
eters we obtain the average �1/�	�9.211, so that the fill-up
time is Ndecay /�min=200 000, the fill-up length is
n�Ndecay�1/�	��1842, and the number of samples required
for the initial fill-up is �Ndecay /�min� /�s=200 000. Figure 9
shows the linked list length, which in this case does not
reach the average filling level with a linear growth law, but
with a smoothed curve. Figure 10 shows the initial part of
the simulated signal, and Fig. 11 shows the histogram of the
normalized signal amplitude: in contrast to the histogram in
Fig. 6, now the amplitude distribution is slightly skewed,
because in this simulation run 1/ �n�1/�	��0.109, much
higher than the calculated skewness for Fig. 6. Finally the
averaged DFT spectrum is shown in Fig. 12: the spectrum
mimics quite well the behavior of a true 1/ f spectrum over
more than three frequency decades.

Figure 13 shows the average spectrum obtained in
a long simulation run with a different power-law noise:
Ns=220=1 048 576 samples have been generated with A=1
and a range-limited power-law distribution of decay rates
�14� with �=0.2, in the range �min=0.0001, �max=1. Here

too the spectral resolution ���0.000 38 is larger than the
minimum decay rate �min, and the noise samples reproduce
the behavior of a true 1/ f1.2 spectrum �dashed line�, over
more than three frequency decades.

This generator can be used to test a standard hypothesis
that is commonly used with FFT-based colored noise genera-
tors, in analogy to the well-known behavior of white noise,
namely, that the standard deviation of the real and imaginary
parts of the discrete Fourier components Fk of a colored
noise process is proportional to the square root of the noise
spectrum Sk �8�. Figure 14 shows the ratio var�Re�Fk�� /Sk for
a simulated 1/ f noise: the average ratio is constant and thus
the simulation does not disprove the standard assumption, at
least for this particular noise process.

In all the examples described above the sampling interval
�s is fixed, but the method is in no way limited to constant
sampling intervals. And indeed this is probably the greatest
strength of this noise generator, its ability to work also with
uneven sampling intervals: this is not true for the other com-
mon generators �6�.

To conclude, in this paper I have described a generator of
colored noise that is exact, is not limited to evenly distrib-
uted samples, has a well-behaved complexity O�Ns� �in con-
trast to many other generators that have an O�Ns log Ns�
complexity�, and is not troubled by hidden periodicity issues,
like the FFT-based generators.
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